login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Squarefree semiprimes (A006881) whose average prime factor is prime.
1

%I #14 Dec 15 2019 08:36:57

%S 21,33,57,69,85,93,129,133,145,177,205,213,217,237,249,253,265,309,

%T 393,417,445,469,489,493,505,517,553,565,573,597,633,669,685,697,753,

%U 781,793,813,817,865,889,913,933,949,973,985,993,1057,1077,1137,1149,1177,1257,1273,1285,1329

%N Squarefree semiprimes (A006881) whose average prime factor is prime.

%C Sum of factors of a(n) if semiprime (product 2*p, with p prime).

%C This sequence is subsequence of A006881, A089765, A187073, A108633 and A213015.

%C This sequence is also subsequence of A045835, because sopfr(omega(a(n))) = omega(sopfr(a(n))): sopfr(omega(a(n)))=sopfr(2)=2, and omega(sopfr(a(n)))=omega(2*p)=2 (p prime, p>2, average prime factor).

%H Robert Israel, <a href="/A271101/b271101.txt">Table of n, a(n) for n = 1..10000</a>

%e 133 is in the sequence because 133 is a squarefree semiprime: 133=7*19, and (7+19)/2=13, a prime number.

%p N:= 10000: # for terms <= N

%p Primes:= select(isprime, [seq(i, i=3..N/3)]):

%p SP:= [seq(seq([p, q], q = select(`<=`, Primes, min(p-1, N/p))), p=Primes)]:

%p B:= select(t -> isprime((t[1]+t[2])/2), SP):

%p sort(map(t -> t[1]*t[2], B)); # _Robert Israel_, Dec 14 2019

%t Select[Select[Range@ 1330, SquareFreeQ@ # && PrimeOmega@ # == 2 &], PrimeQ@ Mean[First /@ FactorInteger@ #] &] (* _Michael De Vlieger_, Mar 30 2016 *)

%o (PARI)

%o sopf(n)= { local(f, s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]); return(s) }

%o {for (n=6, 2*10^3, if(bigomega(n)==2&&omega(n)==2, m=sopf(n)/2;if(m==truncate(m),if(isprime(m), print1(n, ", ")))))}

%Y Cf. A006881, A046315, A046388, A115585, A187073, A089765, A108633, A213015.

%K nonn

%O 1,1

%A _Antonio Roldán_, Mar 30 2016