login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271064
First differences of number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 261", based on the 5-celled von Neumann neighborhood.
1
7, -7, 47, -47, 119, -119, 223, -223, 359, -359, 527, -527, 727, -727, 959, -959, 1223, -1223, 1519, -1519, 1847, -1847, 2207, -2207, 2599, -2599, 3023, -3023, 3479, -3479, 3967, -3967, 4487, -4487, 5039, -5039, 5623, -5623, 6239, -6239, 6887, -6887, 7567
OFFSET
0,1
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Chai Wah Wu, Dec 29 2016: (Start)
a(n) = - a(n-1) + 2*a(n-2) + 2*a(n-3) - a(n-4) - a(n-5) for n>4.
G.f.: (-x^4 + 26*x^2 + 7)/((x - 1)^2*(x + 1)^3). (End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=261; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[on[[i+1]]-on[[i]], {i, 1, Length[on]-1}] (* Difference at each stage *)
CROSSREFS
Cf. A271060.
Sequence in context: A143430 A219399 A219447 * A173294 A165828 A161343
KEYWORD
sign,easy
AUTHOR
Robert Price, Mar 29 2016
STATUS
approved