login
a(n) = 3661529 + 11184810*n.
1

%I #37 Sep 08 2022 08:46:16

%S 3661529,14846339,26031149,37215959,48400769,59585579,70770389,

%T 81955199,93140009,104324819,115509629,126694439,137879249,149064059,

%U 160248869,171433679,182618489,193803299,204988109,216172919,227357729,238542539,249727349,260912159,272096969,283281779,294466589

%N a(n) = 3661529 + 11184810*n.

%C a(n) and a(n) + 14 are the members of A101036.

%C 14 appears as a minimum difference between Riesel numbers for the first 15000 terms that are listed in b-file of A101036.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).

%F G.f.: (3661529 + 7523281*x)/(1 - x)^2.

%F a(n) = 2*a(n-1) - a(n-2) for n>1.

%e a(1) = 3661529 + 11184810*1 = 14846339.

%p A271027:=n->3661529 + 11184810*n: seq(A271027(n), n=0..40); # _Wesley Ivan Hurt_, Apr 02 2016

%t CoefficientList[Series[(3661529 + 7523281 x)/(1 - x)^2, {x, 0, 26}], x] (* _Michael De Vlieger_, Mar 29 2016 *)

%t LinearRecurrence[{2,-1},{3661529,14846339},30] (* _Harvey P. Dale_, Sep 10 2019 *)

%o (PARI) a(n) = 3661529 + 11184810*n;

%o (PARI) x='x+O('x^99); Vec((3661529+7523281*x)/(1-x)^2)

%o (Python) for n in range(0,100):print(3661529+11184810*n) # _Soumil Mandal_, Apr 03 2016

%o (Magma) [3661529 + 11184810*n : n in [0..40]]; // _Wesley Ivan Hurt_, Apr 02 2016

%Y Cf. A101036, A244070, A270993.

%K nonn,easy

%O 0,1

%A _Altug Alkan_, Mar 29 2016