login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270985
Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 238", based on the 5-celled von Neumann neighborhood.
0
1, 5, 20, 76, 300, 1212, 4900, 19740, 79284, 317836, 1272804, 5094204, 20382868, 81543660, 326199108, 1304845468
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Jun 07 2016: (Start)
a(n) = (320-27*2^(3+n)+175*4^n+384*n)/144 for n>2.
a(n) = 8*a(n-1)-21*a(n-2)+22*a(n-3)-8*a(n-4) for n>6.
G.f.: (1+x)*(1-4*x+5*x^2-6*x^3+16*x^4-8*x^5) / ((1-x)^2*(1-2*x)*(1-4*x)).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=238; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Part[on, 2^Range[0, Log[2, stages]]] (* Extract relevant terms *)
CROSSREFS
Cf. A270984.
Sequence in context: A300918 A269708 A295347 * A289786 A129869 A271887
KEYWORD
nonn,more
AUTHOR
Robert Price, Mar 27 2016
EXTENSIONS
a(8)-a(15) from Lars Blomberg, Jun 07 2016
STATUS
approved