login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A270944
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 225", based on the 5-celled von Neumann neighborhood.
1
1, 5, 18, 46, 79, 163, 224, 388, 481, 725, 850, 1202, 1354, 1859, 2083, 2712, 2972, 3820, 4153, 5225, 5585, 6869, 7369, 8833, 9369, 11201, 11813, 13929, 14629, 17057, 17917, 20705, 21746, 24906, 26022, 29474, 30526, 34414, 35771, 40091, 41559, 46291, 47876
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=225; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)
CROSSREFS
Cf. A270942.
Sequence in context: A007237 A327842 A000339 * A272457 A340974 A081435
KEYWORD
nonn,easy
AUTHOR
Robert Price, Mar 26 2016
STATUS
approved