login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270928
Number of ways to write n = x*(x-1)/2 + y*(y-1)/2 + z*(z-1)/2, where 0 < x <= y <= z, and one of x, y, z is prime.
2
1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 3, 2, 1, 2, 1, 3, 3, 2, 2, 2, 2, 2, 2, 1, 3, 4, 2, 2, 2, 2, 1, 4, 2, 3, 2, 2, 3, 2, 2, 2, 4, 2, 3, 3, 1, 2, 5, 1, 2, 3, 3, 4, 3, 3, 1, 5, 1, 3, 2, 3, 3, 5, 2, 2, 4
OFFSET
1,3
COMMENTS
Conjecture: (i) a(n) > 0 for n > 0 with the only exception n = 15^2 = 225. Also, a(n) = 1 only for n = 1, 2, 4, 5, 6, 8, 11, 14, 15, 18, 20, 29, 36, 50, 53, 60, 62, 96, 117, 119, 218, 411, 540, 645, 1125, 1590, 2346, 4068.
(ii) Any positive integer can be written as p*(p-1)/2 + x*(x-1)/2 + P(y) with p prime and x and y integers, where the polynomial P(y) is either of the following ones: y*(y-1), y*(3*y+1)/2, y*(5*y+j)/2 (j = 1,3), y*(3*y+j) (j = 1,2), y*(7*y+3)/2, y*(9*y+j)/2 (j = 1,5,7), y*(5*y+j) (j = 1,3), y*(11*y+9)/2, 2*y*(3*y+j) (j = 1,2), y*(7*y+3).
(iii) Any positive integer can be written as p*(p-1)/2 + P(x,y) with p prime and x and y integers, where the polynomial P(x,y) is either of the following ones: a*x*(x-1)/2+y*(3*y+1)/2 (a = 2,3,4), x*(x-1)+y*(5*y+3)/2, b*x^2+y*(3*y+1)/2 (b = 1,2,3), x^2+y*(5*y+j)/2 (j = 1,3), x^2+y*(3*y+1), x^2+y*(7*y+j)/2 (j = 1,3,5), x^2+y*(4*y+1).
(iv) Every positive integer can be written as p*(p-1)/2+x*(3*x+1)/2+y*(3*y+1)/2 with p prime, x an nonnegative integer and y an integer. Also, for each r = 1,3, any positive integer n can be written as p*(p-1)/2+x*(3*x-1)/2+y*(5*y+r)/2, where p is a prime, and x and y are integers with x nonnegative.
Note that Gauss proved a classical assertion of Fermat which states that any natural number is the sum of three triangular numbers.
See also A270966 for a similar conjecture involving (p-1)^2 with p prime.
The conjecture that a(n) > 0 except for n = 225 appeared as Conjecture 1.2(i) of the author's JNT paper in the links.
LINKS
Zhi-Wei Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127(2007), 103-113.
Zhi-Wei Sun, On universal sums of polygonal numbers, Sci. China Math. 58(2015), no. 7, 1367-1396.
Zhi-Wei Sun, On x(ax+1)+y(by+1)+z(cz+1) and x(ax+b)+y(ay+c)+z(az+d), J. Number Theory 171(2017), 275-283.
EXAMPLE
a(1) = 1 since 1 = 1*(1-1)/2 + 1*(1-1)/2 + 2*(2-1)/2 with 2 prime.
a(4) = 1 since 4 = 1*(1-1)/2 + 2*(2-1)/2 + 3*(3-1)/2 with 2 and 3 prime.
a(29) = 1 since 29 = 1*(1-1)/2 + 2*(2-1)/2 + 8*(8-1)/2 with 2 prime.
a(50) = 1 since 50 = 2*(2-1)/2 + 7*(7-1)/2 + 8*(8-1)/2 with 2 and 7 prime.
a(119) = 1 since 119 = 8*(8-1)/2 + 9*(9-1)/2 + 11*(11-1)/2 with 11 prime.
a(411) = 1 since 411 = 16*(16-1)/2 + 16*(16-1)/2 + 19*(19-1)/2 with 19 prime.
a(1125) = 1 since 1125 = 3*(3-1)/2 + 34*(34-1)/2 + 34*(34-1)/2 with 3 prime.
a(1590) = 1 since 1590 = 7*(7-1)/2 + 37*(37-1)/2 + 43*(43-1)/2 with 7, 37 and 43 prime.
a(2346) = 1 since 2346 = 6*(6-1)/2 + 16*(16-1)/2 + 67*(67-1)/2 with 67 prime.
a(4068) = 1 since 4068 = 7*(7-1)/2 + 34*(34-1)/2 + 84*(84-1)/2 with 7 prime.
MATHEMATICA
TQ[n_]:=TQ[n]=IntegerQ[Sqrt[8n+1]]
Do[r=0; Do[If[TQ[n-x(x-1)/2-y(y-1)/2]&&(PrimeQ[x]||PrimeQ[y]||PrimeQ[(Sqrt[8(n-x(x-1)/2-y(y-1)/2)+1]+1)/2]), r=r+1], {x, 1, (Sqrt[8n/3+1]+1)/2}, {y, x, (Sqrt[8(n-x(x-1)/2)/2+1]+1)/2}]; Print[n, " ", r]; Continue, {n, 1, 70}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 26 2016
STATUS
approved