Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Dec 23 2024 14:53:44
%S 1,1,2,1,18,1,6,3,6,7,46,5,10,3,8,1,16,2,28,1,2,7,16,1,24,12,10,1,10,
%T 2,6,7,26,1,12,3,6,3,8,16,10,3,22,16,2,1,6,1,36,3,6,3,16,1,18,1,8,12,
%U 16,10,12,31,2,10,22,2,36,21,40,6,12,18,6,1,6,7,10,2,18,1,2,1,22,2,12,18,6,1,18,1,58,3,12,7,24,2,16,3,16,6,6,7,46,25,2,1,12,7,18,12,46,3,12,5,10,3,48,1,16,2
%N Smallest k such that k*n^m + 1 is prime, case m=4.
%H Zak Seidov, <a href="/A270927/b270927.txt">Table of n, a(n) for n = 1..10000</a>
%H Zak Seidov,<a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2016-March/016251.html">20 related sequences</a>.
%t With[{m = 4, nn = 120}, Table[SelectFirst[Range@ nn, PrimeQ[# n^m + 1] &], {n, nn}]] (* _Michael De Vlieger_, Mar 26 2016, Version 10 *)
%t sk[n_]:=Module[{k=1,c=n^4},While[!PrimeQ[k*c+1],k++];k]; Array[sk,120] (* _Harvey P. Dale_, Jun 05 2021 *)
%o (PARI) {m=4;for(n=1,10000,k=1;while(!isprime(k*n^m+1),k++);
%o write("b270927.txt",n" "k))} \\ for b-file - _Zak Seidov_, Mar 26 2016
%Y Cf. A034693 (m=1), A035092 (m=2), A238847 (m=3).
%K nonn
%O 1,3
%A _Zak Seidov_, Mar 26 2016