login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficient of x^n in Product_{k>=1} (1+x^k)^n.
24

%I #33 Apr 20 2023 11:50:46

%S 1,1,3,13,51,206,855,3585,15155,64525,276278,1188353,5130999,22226049,

%T 96544003,420368858,1834203955,8018057345,35107961175,153950675585,

%U 675978772326,2971700764941,13078268135683,57613905606273,254038914924791,1121081799217231

%N Coefficient of x^n in Product_{k>=1} (1+x^k)^n.

%C From _Peter Bala_, Apr 18 2023: (Start)

%C The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.

%C Conjecture: the supercongruence a(p) == p + 1 (mod p^2) holds for all primes p. (End)

%H Vaclav Kotesovec, <a href="/A270913/b270913.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) ~ c * d^n / sqrt(n), where d = A270914 = 4.5024767476173544877385939327007... and c = A327280 = 0.260542233142438469433860832160...

%p b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(

%p `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)

%p end:

%p g:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, b(n),

%p (q-> add(g(j, q)*g(n-j, k-q), j=0..n))(iquo(k, 2))))

%p end:

%p a:= n-> g(n$2):

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Jan 31 2021

%t Table[SeriesCoefficient[Product[(1+x^k)^n, {k, 1, n}], {x, 0, n}], {n, 0, 25}]

%t Table[SeriesCoefficient[QPochhammer[-1, x]^n, {x, 0, n}]/2^n, {n, 0, 25}]

%t Table[SeriesCoefficient[Exp[n*Sum[(-1)^j*x^j/(j*(x^j - 1)), {j, 1, n}]], {x, 0, n}], {n, 0, 25}] (* _Vaclav Kotesovec_, May 19 2018 *)

%o (PARI) {a(n)=polcoeff(prod(k=1, n, (1 + x^k +x*O(x^n))^n), n)}

%o for(n=0, 20, print1(a(n), ", ")) \\ _Vaclav Kotesovec_, Aug 26 2019

%Y Cf. A000009, A008485, A255526, A270914, A270917, A270919, A324595, A362408.

%K nonn

%O 0,3

%A _Vaclav Kotesovec_, Mar 25 2016