Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Aug 02 2018 15:13:44
%S 1,0,1,0,1,3,0,1,28,28,0,1,400,1680,840,0,1,10416,168640,277760,83328,
%T 0,1,525792,36053248,159989760,139991040,27998208,0,1,51116992,
%U 17811244032,209056841728,419919790080,227569434624,32509919232
%N Triangle read by rows: T(n,m) is the number of direct-sum decompositions of a finite vector space of dimension n with m blocks over GF(2).
%H Geoffrey Critzer, <a href="https://esirc.emporia.edu/handle/123456789/3595">Combinatorics of Vector Spaces over Finite Fields</a>, Master's thesis, Emporia State University, 2018.
%H David Ellerman, <a href="http://arxiv.org/abs/1603.07619">The number of direct-sum decompositions of a finite vector space</a>, arXiv:1603.07619 [math.CO], 2016.
%H David Ellerman, <a href="http://arxiv.org/abs/1604.01087">The Quantum Logic of Direct-Sum Decompositions</a>, arXiv preprint arXiv:1604.01087 [quant-ph], 2016. See Section 7.5.
%F T(n,m) = Sum_ g(n)/(g(n_1)*g(n_2)***g(n_m))/(a_1!*a_2!***a_n!) where the sum is over all partitions of n into m parts and a_1,a_2,...,a_n is the part count signature of the partition and g(n) = A002884(n). - _Geoffrey Critzer_, May 18 2017 (after formula given in first Ellerman link above).
%e Triangle begins:
%e 1;
%e 0, 1;
%e 0, 1, 3;
%e 0, 1, 28, 28;
%e 0, 1, 400, 1680, 840;
%e 0, 1, 10416, 168640, 277760, 83328;
%e ...
%t g[n_] := q^Binomial[n, 2] *FunctionExpand[QFactorial[n, q]]*(q - 1)^n /. q -> 2;Table[Table[Total[Map[g[n]/Apply[Times, g[#]]/Apply[Times, Table[Count[#, i], {i, 1, n}]!] &,IntegerPartitions[n, {m}]]], {m, 1, n}], {n, 1, 6}] // Grid (* _Geoffrey Critzer_, May 18 2017 *)
%Y Cf. A053601 (right diagonal), A270881 (row sums), A270882.
%K nonn,tabl
%O 0,6
%A _Michel Marcus_, Mar 25 2016