login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270872
a(n) = n^8 + 7*n^7 + 34*n^6 + 111*n^5 + 275*n^4 + 511*n^3 + 703*n^2 + 623*n + 13.
3
13, 2278, 19439, 117910, 550009, 2072078, 6584443, 18269614, 45445445, 103390294, 218437543, 433677158, 816642289, 1469399230, 2541499379, 4246292158, 6881138173, 10852102214, 16703746015, 25154681014, 37139581673, 53858400238, 76833564139, 107975977550
OFFSET
0,1
LINKS
Andrew Misseldine, Counting Schur Rings over Cyclic Groups, arXiv preprint arXiv:1508.03757 [math.RA], 2015. (page 19, 4th row; page 21, 8th row).
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
G.f.: (13+2161*x-595*x^2+23875*x^3-1091*x^4+19271*x^5-4997*x^6+1909*x^7-226*x^8)/(1-x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9).
MATHEMATICA
Table[n^8 + 7 n^7 + 34 n^6 + 111 n^5 + 275 n^4 + 511 n^3 + 703 n^2 + 623 n + 13, {n, 0, 40}]
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {13, 2278, 19439, 117910, 550009, 2072078, 6584443, 18269614, 45445445}, 30] (* Harvey P. Dale, Jan 14 2023 *)
PROG
(Magma) [n^8+7*n^7+34*n^6+111*n^5+275*n^4+511*n^3+703*n^2+623*n+13: n in [0..40]];
(PARI) x='x+O('x^99); Vec((13+2161*x-595*x^2+23875*x^3-1091*x^4+19271*x^5-4997*x^6+1909*x^7-226*x^8)/(1-x)^9) \\ Altug Alkan, Apr 04 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Apr 04 2016
STATUS
approved