login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270850
T(n,k)=Number of nXnXn triangular 0..k arrays with some element plus some adjacent element totalling k+1, k or k-1 exactly once.
12
0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 24, 30, 0, 0, 0, 66, 270, 252, 0, 0, 0, 120, 1650, 6822, 2298, 0, 0, 0, 198, 7344, 108348, 307494, 28440, 0, 0, 0, 288, 24954, 1144464, 15754872, 27582438, 460494, 0, 0, 0, 402, 68838, 8559378, 469037376, 5805948474, 4875050400
OFFSET
1,8
COMMENTS
Table starts
.0.0......0..........0.............0................0..................0
.0.0......6.........24............66..............120................198
.0.0.....30........270..........1650.............7344..............24954
.0.0....252.......6822........108348..........1144464............8559378
.0.0...2298.....307494......15754872........469037376.........8746813158
.0.0..28440...27582438....5805948474.....571228600932.....29999932959600
.0.0.460494.4875050400.5281372355106.2104222937252028.358240737864481086
LINKS
FORMULA
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = 2*a(n-1) -2*a(n-3) +a(n-4) for n>5
n=3: [order 10] for n>17
n=4: [order 18] for n>33
Empirical quasipolynomials for row n:
n=2: polynomial of degree 2 plus a quasipolynomial of degree 0 with period 2 for n>1
n=3: polynomial of degree 5 plus a quasipolynomial of degree 3 with period 2 for n>7
n=4: polynomial of degree 9 plus a quasipolynomial of degree 7 with period 2 for n>15
EXAMPLE
Some solutions for n=4 k=4
.....3........0........4........3........2........3........0........0
....4.3......0.1......4.4......4.4......4.4......4.4......0.0......1.2
...4.2.4....1.0.1....2.4.3....3.3.3....3.4.4....2.4.4....0.0.0....1.0.0
..3.4.4.3..2.0.1.0..4.2.4.3..2.4.4.3..4.2.4.2..0.4.4.2..2.1.0.2..0.1.1.1
CROSSREFS
Sequence in context: A308091 A096527 A028599 * A322379 A225339 A365989
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 24 2016
STATUS
approved