login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Period 16: repeat [0, 1, 1, 0, 2, 3, 3, 2, 3, 2, 2, 3, 1, 0, 0, 1].
1

%I #39 Sep 16 2017 19:34:41

%S 0,1,1,0,2,3,3,2,3,2,2,3,1,0,0,1,0,1,1,0,2,3,3,2,3,2,2,3,1,0,0,1,0,1,

%T 1,0,2,3,3,2,3,2,2,3,1,0,0,1,0,1,1,0,2,3,3,2,3,2,2,3,1,0,0,1,0,1,1,0,

%U 2,3,3,2,3,2,2,3,1,0,0,1,0,1,1,0,2,3,3,2,3,2,2,3,1,0,0,1

%N Period 16: repeat [0, 1, 1, 0, 2, 3, 3, 2, 3, 2, 2, 3, 1, 0, 0, 1].

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,-1,1).

%F a(n) = (floor((n+4)/4) - [floor(n/4) + floor((n+4)/4)] * [(floor((n+12)/8)) mod 2 * (floor((n+3)/2)) mod 2 + (floor((n+4)/8)) mod 2 * (floor((n+1)/2)) mod 2]) mod 4.

%F From _Chai Wah Wu_, Jun 04 2016: (Start)

%F a(n) = a(n-1) - a(n-8) + a(n-9) for n > 8.

%F G.f.: x*(1 - x^2 + 2*x^3 + x^4 - x^6 + x^7)/((1 - x)*(1 + x^8)). (End)

%t PadRight[{},120,{0,1,1,0,2,3,3,2,3,2,2,3,1,0,0,1}] (* _Harvey P. Dale_, Sep 16 2017 *)

%o (PARI) a(n)=[0, 1, 1, 0, 2, 3, 3, 2, 3, 2, 2, 3, 1, 0, 0, 1][n%16+1] \\ _Charles R Greathouse IV_, Jul 17 2016

%Y Cf. A270823.

%K nonn,easy

%O 0,5

%A _William Walkington_, Mar 23 2016