login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total sum of the sizes of all blocks with maximal element 2 in all set partitions of {1,2,...,n}.
3

%I #10 May 26 2018 11:20:39

%S 3,4,9,25,82,307,1283,5894,29427,158269,910520,5570737,36071631,

%T 246188196,1764757189,13246059237,103825154098,847806545767,

%U 7196895817375,63389642645486,578318132627495,5456455370760825,53165437331978992,534262881004973981

%N Total sum of the sizes of all blocks with maximal element 2 in all set partitions of {1,2,...,n}.

%H Alois P. Heinz, <a href="/A270756/b270756.txt">Table of n, a(n) for n = 2..577</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>

%t b[n_, m_, t_] := b[n, m, t] = If[n == 0, {1, 0}, Sum[If[t == 1 && j != m + 1, 0, Function[p, p + If[j == -t || t == 1 && j == m + 1, {0, p[[1]]}, 0]][b[n - 1, Max[m, j], If[t == 1 && j == m + 1, -j, If[t < 0, t, If[t > 0, t - 1, 0]]]]]], {j, 1, m + 1}]];

%t a[n_] := b[n, 0, Max[0, 1 + n - 2]][[2]];

%t Array[a, 24, 2] (* _Jean-François Alcover_, May 26 2018, from Maple code for A270701 *)

%Y Column k=2 of A270701.

%Y A diagonal of A270702.

%K nonn

%O 2,1

%A _Alois P. Heinz_, Mar 22 2016