Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Nov 22 2017 01:15:06
%S 1,1,1,1,2,1,2,1,2,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1,2,2,1,1,2,1,2,2,1,2,
%T 1,1,2,2,1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,1,2,2,1,1,2,1,1,2,2,1,2,
%U 1,1,2,1,1,2,2,1,2,2,1,1,2,1,2,2,1,2
%N The sequence a of 1's and 2's starting with (1,1,1,1) such that a(n) is the length of the (n+1)st run of a.
%C Guide to related sequences (with adjustments for initial terms):
%C 1, 1, 1, 1; a(n) = length of (n + 1)st run of a; A270641
%C 1, 1, 1, 2; a(n) = length of (n + 2)nd run of a; A270641
%C 1, 1, 2, 1; a(n) = length of (n + 3)rd run of a; A270641
%C 1, 1, 2, 2; a(n) = length of (n + 2)nd run of a; A270642
%C 1, 2, 1, 1; a(n) = length of (n + 3)rd run of a; A022300
%C 1, 2, 1, 2; a(n) = length of (n + 4)th run of a; A270641
%C 1, 2, 2, 1; a(n) = length of (n + 3)rd run of a; A270643
%C 1, 2, 2, 2; a(n) = length of (n + 2)nd run of a; A270644
%C 2, 1, 1, 1; a(n) = length of (n + 2)nd run of a; A270645
%C 2, 1, 1, 2; a(n) = length of (n + 3)rd run of a; A222300
%C 2, 1, 2, 1; a(n) = length of (n + 4)th run of a; A270641
%C 2, 1, 2, 2; a(n) = length of (n + 3)rd run of a; A000002 (Kolakoski)
%C 2, 2, 1, 1; a(n) = length of (n + 2)nd run of a; A270646
%C 2, 2, 1, 2; a(n) = length of (n + 3)rd run of a; A270647
%C 2, 2, 2, 1; a(n) = length of (n + 2)nd run of a; A270644
%C 2, 2, 2, 2; a(n) = length of (n + 1)st run of a; A270648
%H Clark Kimberling, <a href="/A270641/b270641.txt">Table of n, a(n) for n = 1..10000</a>
%e a(1) = 1, so the 2nd run has length 1, so a(5) must be 2 and a(6) = 1.
%e a(2) = 1, so the 3rd run has length 1, so a(7) = 2.
%e a(3) = 1, so the 4th run has length 1, so a(8) = 1.
%e a(4) = 1, so the 5th run has length 1, so a(9) = 2.
%e a(5) = 2, so the 6th run has length 2, so a(10) = 2 and a(11) = 1.
%e Globally, the runlength sequence of a is 4,1,1,1,1,2,1,2,1,2,2,1,...., and deleting the first term leaves a = A270641.
%t a = {1, 1, 1, 1};
%t Do[a = Join[a, ConstantArray[If[Last[a] == 1, 2, 1], {a[[n]]}]], {n, 200}]; a
%t (* _Peter J. C. Moses_, Apr 01 2016 *)
%Y Cf. A000002, A006928, A022300,
%K nonn,easy
%O 1,5
%A _Clark Kimberling_, Apr 05 2016