Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Feb 24 2018 14:02:10
%S 2,3,29,5427,44351523,2425185575687123,
%T 28554057480843193512603851183810,
%U 867562462760057302403082510579589337681874970064132683984477238
%N Denominators of r-Egyptian fraction expansion for -1 + golden ratio, where r(k) = 1/(2k-1).
%C Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
%C See A269993 for a guide to related sequences.
%H Clark Kimberling, <a href="/A270550/b270550.txt">Table of n, a(n) for n = 1..11</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EgyptianFraction.html">Egyptian Fraction</a>
%H <a href="/index/Ed#Egypt">Index entries for sequences related to Egyptian fractions</a>
%e golden ratio - 1 = 1/(1*2) + 1/(3*3) + 1/(5*29) + 1/(7*5427) + ...
%t r[k_] := 1/(2k-1); f[x_, 0] = x; z = 10;
%t n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
%t f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
%t x = GoldenRatio - 1; Table[n[x, k], {k, 1, z}]
%o (PARI) r(k) = 1/(2*k-1);
%o f(k,x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x););
%o a(k, x=(sqrt(5)-1)/2) = ceil(r(k)/f(k-1, x)); \\ _Michel Marcus_, Apr 03 2016
%Y Cf. A269993, A005408, A094214.
%K nonn,frac,easy
%O 1,1
%A _Clark Kimberling_, Apr 02 2016