The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270519 Denominators of r-Egyptian fraction expansion for sqrt(2) - 1, where r(k) = 1/k!. 0
 3, 7, 18, 217, 21586, 132830816, 8232750479147118, 8738244742575919521189548340591, 28575128242342620144630216663972970082807062570299713849045286 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1).  Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k).  Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x. See A269993 for a guide to related sequences. LINKS Eric Weisstein's World of Mathematics, Egyptian Fraction EXAMPLE sqrt(2) - 1 = 1/(1*3) + 1/(2*7) + 1/(6*18) + 1/(24*217) + ... MATHEMATICA r[k_] := 1/k!; f[x_, 0] = x; z = 10; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = Sqrt - 1; Table[n[x, k], {k, 1, z}] PROG (PARI) r(k) = 1/k!; f(k, x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x); ); a(k, x=sqrt(2)-1) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 31 2016 CROSSREFS Cf. A269993, A000142, A188582. Sequence in context: A134045 A079898 A173449 * A212848 A217371 A088629 Adjacent sequences:  A270516 A270517 A270518 * A270520 A270521 A270522 KEYWORD nonn,frac,easy AUTHOR Clark Kimberling, Mar 30 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 30 21:56 EDT 2020. Contains 333132 sequences. (Running on oeis4.)