login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270478
Denominators of r-Egyptian fraction expansion for sqrt(2) - 1, where r(k) = 1/Prime(k).
1
2, 3, 4, 47, 1445, 3111965, 60437225141058, 19833308022477607066005214665, 466985874016778023693751912505337681207396530069379830856, 214712731506707254615377967955272660569584599006507424981466453878259117882233362841865583894851904770121359232415
OFFSET
1,1
COMMENTS
Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.
EXAMPLE
sqrt(2) - 1 = 1/(2*2) + 1/(3*3) + 1/(5*4) + 1/(7*47) + ...
MATHEMATICA
r[k_] := 1/Prime[k]; f[x_, 0] = x; z = 10;
n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
x = Sqrt[2] - 1; Table[n[x, k], {k, 1, z}]
CROSSREFS
Sequence in context: A037322 A037429 A230452 * A235495 A257482 A023167
KEYWORD
nonn,frac,easy
AUTHOR
Clark Kimberling, Mar 30 2016
STATUS
approved