

A270392


The sum of the digits in the periodic part of the decimal expansion of 1/n.


1



0, 0, 3, 0, 0, 6, 27, 0, 1, 0, 9, 3, 27, 27, 6, 0, 72, 5, 81, 0, 27, 9, 99, 6, 0, 27, 10, 27, 126, 3, 54, 0, 3, 72, 27, 7, 9, 81, 18, 0, 18, 27, 90, 9, 2, 99, 207, 3, 189, 0, 69, 27, 63, 14, 9, 27, 81, 126, 261, 6, 270, 54, 24, 0, 27, 6, 144, 72, 96, 27, 126, 8, 36, 9, 3, 81, 27, 18, 54, 0, 37, 18, 171, 27, 72, 99, 123, 9
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

It appears that all nonzero terms in this sequence are divisible by 3 unless n is divisible by 9.


LINKS

Table of n, a(n) for n=1..88.


FORMULA

a(n) = A007953(A036275(n)).


EXAMPLE

1/7 = 0.142857142857142857... and digitcycle is 142857, the sum of these integers is 27 so a(7)=27.


MATHEMATICA

a[n_] := Block[{d = RealDigits[1/n][[1, 1]]}, If[ IntegerQ@d, 0, Plus @@ d]]; Array[a, 100] (* Giovanni Resta, May 15 2016 *)


CROSSREFS

Cf. A036275.
Sequence in context: A285311 A285131 A110620 * A060284 A036275 A131436
Adjacent sequences: A270389 A270390 A270391 * A270393 A270394 A270395


KEYWORD

base,nonn,easy


AUTHOR

Neville Styles, Mar 16 2016


STATUS

approved



