|
|
A270387
|
|
Primes p such that A000129(p) is not a prime number.
|
|
1
|
|
|
7, 17, 19, 23, 31, 37, 43, 47, 61, 67, 71, 73, 79, 83, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 173, 179, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Primes p such that ((1+sqrt(2))^p - (1-sqrt(2))^p) / (2*sqrt(2)) is a composite number.
|
|
LINKS
|
Table of n, a(n) for n=1..58.
|
|
PROG
|
(PARI) a000129(n) = ([2, 1; 1, 0]^n)[2, 1];
forprime(p=2, 1e3, if(!isprime(a000129(p)), print1(p, ", ")));
|
|
CROSSREFS
|
Cf. A000129, A096650.
Sequence in context: A191070 A167797 A001913 * A071845 A084704 A198032
Adjacent sequences: A270384 A270385 A270386 * A270388 A270389 A270390
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Altug Alkan, Mar 16 2016
|
|
STATUS
|
approved
|
|
|
|