login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n for which prime(n+1)-prime(n) is a multiple of three.
12

%I #16 Jul 11 2017 17:15:45

%S 9,11,15,16,18,21,23,32,36,37,39,40,46,47,51,54,55,56,58,67,71,73,74,

%T 76,84,86,91,96,97,99,100,102,103,105,107,108,110,111,114,118,119,121,

%U 123,129,130,133,139,160,161,164,165,167,168,170,174,179,180,184,185,187,188,194,195,197,199,200,202,203,205,208,210

%N Numbers n for which prime(n+1)-prime(n) is a multiple of three.

%C Numbers n for which A001223(n) = 0 modulo 3.

%C See comments in A270189 and A269364.

%C Equivalently, numbers n for which prime(n+1)-prime(n) is a multiple of six. See A276414 for runs of increasing length of consecutive integers. - _M. F. Hasler_, Sep 03 2016

%H Antti Karttunen, <a href="/A270190/b270190.txt">Table of n, a(n) for n = 1..10000</a>

%H Terence Tao, <a href="https://terrytao.wordpress.com/2016/03/14/biases-between-consecutive-primes/">Biases between consecutive primes</a>, blog entry March 14, 2016

%F Other identities. For all n >= 1:

%F a(n) = A269399(n) + 6.

%F A269850(a(n)) = n.

%e 9 is present as the difference between A000040(9+1) = 29 and A000040(9) = 23 is 6, a multiple of three.

%t Select[Range@ 210, Divisible[Prime[# + 1] - Prime@ #, 3] &] (* _Michael De Vlieger_, Mar 17 2016 *)

%t PrimePi/@Select[Partition[Prime[Range[350]],2,1],Divisible[#[[2]]-#[[1]], 3]&][[All,1]] (* _Harvey P. Dale_, Jul 11 2017 *)

%o (Scheme, with _Antti Karttunen_'s IntSeq-library)

%o (define A270190 (ZERO-POS 1 1 A137264))

%o (PARI) isok(n) = ((prime(n+1) - prime(n)) % 3) == 0; \\ _Michel Marcus_, Mar 17 2016

%Y Complement: A270189.

%Y Positions of zeros in A137264.

%Y Left inverse: A269850.

%Y Cf. also A001223, A269364, A270191, A270192, A269399.

%K nonn

%O 1,1

%A _Antti Karttunen_, Mar 16 2016