login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A270183
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 115", based on the 5-celled von Neumann neighborhood.
1
1, 6, 11, 52, 64, 173, 189, 398, 418, 755, 783, 1284, 1312, 2001, 2053, 2966, 3026, 4187, 4255, 5712, 5768, 7525, 7645, 9730, 9870, 12295, 12475, 15348, 15480, 18765, 19017, 22814, 23042, 27331, 27519, 32292, 32608, 37953, 38221, 44166, 44482, 51047, 51415
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=115; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)
CROSSREFS
Cf. A270181.
Sequence in context: A295498 A270158 A270166 * A270212 A077701 A341943
KEYWORD
nonn,easy
AUTHOR
Robert Price, Mar 12 2016
STATUS
approved