login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270129
Number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 89", based on the 5-celled von Neumann neighborhood.
4
1, 4, 5, 44, 0, 121, 0, 225, 0, 361, 0, 529, 0, 729, 0, 961, 0, 1225, 0, 1521, 0, 1849, 0, 2209, 0, 2601, 0, 3025, 0, 3481, 0, 3969, 0, 4489, 0, 5041, 0, 5625, 0, 6241, 0, 6889, 0, 7569, 0, 8281, 0, 9025, 0, 9801, 0, 10609, 0, 11449, 0, 12321, 0, 13225, 0
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Mar 12 2016: (Start)
a(n) = -1/2*(-1+(-1)^n)*(1+2*n)^2 for n>3.
a(n) = 0 for n>3 and n even.
a(n) = 4*n^2+4*n+1 for n>3 and n odd.
a(n) = 3*a(n-2)-3*a(n-4)+a(n-6) for n>9.
G.f.: (1+4*x+2*x^2+32*x^3-12*x^4+x^5+14*x^6-10*x^7-5*x^8+5*x^9) / ((1-x)^3*(1+x)^3).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=89; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
CROSSREFS
Sequence in context: A245696 A317139 A123304 * A271293 A256290 A041037
KEYWORD
nonn,easy
AUTHOR
Robert Price, Mar 11 2016
STATUS
approved