login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n^3 + (n+1)*(n+2).
6

%I #45 Sep 08 2022 08:46:16

%S 2,7,20,47,94,167,272,415,602,839,1132,1487,1910,2407,2984,3647,4402,

%T 5255,6212,7279,8462,9767,11200,12767,14474,16327,18332,20495,22822,

%U 25319,27992,30847,33890,37127,40564,44207,48062,52135,56432,60959,65722,70727,75980,81487,87254

%N a(n) = n^3 + (n+1)*(n+2).

%C For n>1, many consecutive terms of the sequence are generated by floor(sqrt(n^2 + 2)^3) + n^2 + 2.

%C It appears that this is a subsequence of A000037 (the nonsquares).

%C The primes in the sequence belong to A045326.

%C Inverse binomial transform is 2, 5, 8, 6, 0, 0, 0, ... (0 continued).

%H Bruno Berselli, <a href="/A270109/b270109.txt">Table of n, a(n) for n = 0..1000</a>

%H MathsSmart, <a href="https://www.youtube.com/watch?v=iMc3z8TvV8g">Number pattern and Puzzle - 7, 20, 47, 94, 167</a>.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F O.g.f.: (2 - x + 4*x^2 + x^3)/(1 - x)^4.

%F E.g.f.: (2 + x)*(1 + x)^2*exp(x).

%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n>3.

%F a(n+h) - a(n) + a(n-h) = n^3 + n^2 + (6*h^2+3)*n + (2*h^2+2) for any h. This identity becomes a(n) = n^3 + n^2 + 3*n + 2 if h=0.

%F a(h*a(n) + n) = (h*a(n))^3 + (3*n+1)*(h*a(n))^2 + (3*n^2+2*n+3)*(h*a(n)) + a(n) for any h, therefore a(h*a(n) + n) is always a multiple of a(n).

%F a(n) + a(-n) = 2*A059100(n) = A255843(n).

%F a(n) - a(-n) = 4*A229183(n).

%t Table[n^3 + (n + 1) (n + 2), {n, 0, 50}]

%o (PARI) vector(50, n, n--; n^3+(n+1)*(n+2))

%o (Sage) [n^3+(n+1)*(n+2) for n in (0..50)]

%o (Maxima) makelist(n^3+(n+1)*(n+2), n, 0, 50);

%o (Magma) [n^3+(n+1)*(n+2): n in [0..50]];

%Y Subsequence of A001651, A047212.

%Y Cf. A000037, A045326.

%Y Cf. A027444: numbers of the form n^3+n*(n+1); A085490: numbers of the form n^3+(n-1)*n.

%Y Cf. A008865: numbers of the form n+(n+1)*(n+2); A130883: numbers of the form n^2+(n+1)*(n+2).

%K nonn,easy

%O 0,1

%A _Bruno Berselli_, Mar 11 2016, at the suggestion of Giuseppe Amoruso in BASE Cinque forum.