login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number A(n,k) of tilings of a k X n rectangle using monominoes and trominoes of any shape; square array A(n,k), n>=0, k>=0, read by antidiagonals.
12

%I #13 Oct 18 2018 16:25:08

%S 1,1,1,1,1,1,1,1,1,1,1,2,5,2,1,1,3,14,14,3,1,1,4,45,93,45,4,1,1,6,140,

%T 590,590,140,6,1,1,9,438,3710,7517,3710,438,9,1,1,13,1371,23509,96176,

%U 96176,23509,1371,13,1,1,19,4287,148796,1238818,2501946,1238818,148796,4287,19,1

%N Number A(n,k) of tilings of a k X n rectangle using monominoes and trominoes of any shape; square array A(n,k), n>=0, k>=0, read by antidiagonals.

%H Alois P. Heinz, <a href="/A270061/b270061.txt">Antidiagonals n = 0..25, flattened</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Tromino">Tromino</a>

%e A(2,3) = A(3,2) = 14:

%e ._____. ._____. ._____. ._____. ._____. ._____. ._____.

%e |_____| |_|_|_| |_____| |_| |_| | |_|_| | ._|_| |_. |_|

%e |_____| |_____| |_|_|_| |___|_| |___|_| |_|_|_| |_|_|_|

%e .

%e ._____. ._____. ._____. ._____. ._____. ._____. ._____.

%e |_|_|_| | ._| | | |_. | |_|_| | |_| |_| |_| ._| |_|_. |

%e |_|_|_| |_|___| |___|_| |_|___| |_|___| |_|_|_| |_|_|_| .

%e .

%e Square array A(n,k) begins:

%e 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 1, 1, 2, 3, 4, 6, ...

%e 1, 1, 5, 14, 45, 140, 438, ...

%e 1, 2, 14, 93, 590, 3710, 23509, ...

%e 1, 3, 45, 590, 7517, 96176, 1238818, ...

%e 1, 4, 140, 3710, 96176, 2501946, 65410388, ...

%e 1, 6, 438, 23509, 1238818, 65410388, 3473827027, ...

%Y Columns (or rows) k=0-10 give: A000012, A000930, A270062, A270063, A270064, A270065, A270066, A270067, A270068, A270069, A270070.

%Y Main diagonal gives A270071.

%Y Cf. A233320.

%K nonn,tabl

%O 0,12

%A _Alois P. Heinz_, Mar 09 2016