login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Denominators of r-Egyptian fraction expansion for sqrt(3) - 1, where r = (1,1/2,1/3,1/4,...)
2

%I #12 Feb 23 2018 22:03:24

%S 2,3,6,26,939,800567,626897816036,732632470241183632257841,

%T 31706715561023122142248280773186018287458544854469,

%U 1666726692230759969765850044548001173784581299264219742879080654883940143766478552206863259848365362

%N Denominators of r-Egyptian fraction expansion for sqrt(3) - 1, where r = (1,1/2,1/3,1/4,...)

%C Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.

%C See A269993 for a guide to related sequences.

%H Clark Kimberling, <a href="/A269996/b269996.txt">Table of n, a(n) for n = 1..13</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EgyptianFraction.html">Egyptian Fraction</a>

%H <a href="/index/Ed#Egypt">Index entries for sequences related to Egyptian fractions</a>

%e sqrt(3) - 1 = 1/2 + 1/(2*3) + 1/(3*6) + ...

%t r[k_] := 1/k; f[x_, 0] = x; z = 10;

%t n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]

%t f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]

%t x = Sqrt[3] - 1; Table[n[x, k], {k, 1, z}]

%Y Cf. A269993.

%K nonn,frac,easy

%O 1,1

%A _Clark Kimberling_, Mar 15 2016