login
A269992
Decimal expansion of Sum_{n>=1} 2^(1-n)/L(n), where L = A000032 (Lucas numbers).
3
1, 2, 5, 5, 2, 2, 1, 1, 3, 4, 3, 2, 9, 8, 4, 8, 6, 0, 3, 1, 4, 0, 2, 6, 6, 7, 2, 7, 4, 4, 0, 3, 3, 6, 0, 1, 5, 6, 0, 5, 4, 3, 5, 7, 0, 4, 4, 4, 4, 3, 0, 0, 3, 8, 3, 6, 8, 8, 7, 0, 6, 2, 4, 1, 4, 9, 3, 0, 9, 6, 6, 8, 6, 0, 2, 5, 3, 8, 6, 3, 0, 8, 6, 8, 9, 0
OFFSET
1,2
FORMULA
Equals Sum_{n>=1} 1/A084057(n) = 2 * Sum_{n>=1} 1/A087131(n). - Amiram Eldar, Feb 01 2021
EXAMPLE
1.2552211343298486031402667274403360...
MATHEMATICA
x = N[Sum[2^(1 - n)/LucasL[n], {n, 1, 500}], 100]
RealDigits[x][[1]]
PROG
(PARI) L(n) = real((2 + quadgen(5)) * quadgen(5)^n); \\ A000032
suminf(n=1, 2^(1-n)/L(n)) \\ Michel Marcus, Nov 17 2020
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
Clark Kimberling, Mar 12 2016
STATUS
approved