Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Apr 18 2016 06:38:07
%S 1,0,1,0,0,1,0,1,1,1,0,2,5,3,1,0,9,20,17,6,1,0,44,109,100,45,10,1,0,
%T 265,689,694,355,100,15,1,0,1854,5053,5453,3094,1015,196,21,1,0,14833,
%U 42048,48082,29596,10899,2492,350,28,1
%N Triangle read by rows, T(n,k) = Sum_{j=0..n} C(-j,-n)*S1(j,k), S1 the Stirling cycle numbers A132393, for n>=0 and 0<=k<=n.
%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/ExtensionsOfTheBinomial">Extensions of the binomial</a>
%e Triangle starts:
%e 1,
%e 0, 1,
%e 0, 0, 1,
%e 0, 1, 1, 1,
%e 0, 2, 5, 3, 1,
%e 0, 9, 20, 17, 6, 1,
%e 0, 44, 109, 100, 45, 10, 1,
%e 0, 265, 689, 694, 355, 100, 15, 1.
%p A269954 := (n, k) -> add(binomial(-j, -n)*abs(Stirling1(j, k)), j=0..n):
%p seq(seq(A269954(n, k), k=0..n), n=0..9);
%t Flatten[Table[Sum[Binomial[-j,-n] Abs[StirlingS1[j,k]],{j,0,n}], {n,0,9},{k,0,n}]]
%Y A000255 (row sums), A000166(col. 1), A000217 (diag. n,n-1), A133252 (diag. n,n-2).
%K nonn,tabl
%O 0,12
%A _Peter Luschny_, Apr 12 2016