login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 2.
14

%I #32 Aug 10 2018 17:36:22

%S 21,483,483,6468,15018,6468,66066,258972,258972,66066,570570,3288327,

%T 5554188,3288327,570570,4390386,34374186,85421118,85421118,34374186,

%U 4390386,31039008,313530000,1059255456,1558792200,1059255456,313530000,31039008

%N Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 2.

%C Row n contains n-3 terms.

%H Gheorghe Coserea, <a href="/A269922/b269922.txt">Rows n = 4..204, flattened</a>

%H Sean R. Carrell, Guillaume Chapuy, <a href="http://arxiv.org/abs/1402.6300">Simple recurrence formulas to count maps on orientable surfaces</a>, arXiv:1402.6300 [math.CO], 2014.

%e Triangle starts:

%e n\f [1] [2] [3] [4] [5] [6]

%e [4] 21;

%e [5] 483, 483;

%e [6] 6468, 15018, 6468;

%e [7] 66066, 258972, 258972, 66066;

%e [8] 570570, 3288327, 5554188, 3288327, 570570;

%e [9] 4390386, 34374186, 85421118, 85421118, 34374186, 4390386;

%e [10] ...

%t Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;

%t Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);

%t Table[Q[n, f, 2], {n, 4, 10}, {f, 1, n-3}] // Flatten (* _Jean-François Alcover_, Aug 10 2018 *)

%o (PARI)

%o N = 10; G = 2; gmax(n) = min(n\2, G);

%o Q = matrix(N + 1, N + 1);

%o Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };

%o Qset(n, g, v) = { Q[n+1, g+1] = v };

%o Quadric({x=1}) = {

%o Qset(0, 0, x);

%o for (n = 1, length(Q)-1, for (g = 0, gmax(n),

%o my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),

%o t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),

%o t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,

%o (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));

%o Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));

%o };

%o Quadric('x);

%o concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))

%Y Columns f=1-10 give: A006298 f=1, A288082 f=2, A288083 f=3, A288084 f=4, A288085 f=5, A288086 f=6, A288087 f=7, A288088 f=8, A288089 f=9, A288090 f=10.

%Y Row sums give A006301 (column 2 of A269919).

%Y Cf. A006299 (row maxima), A269921.

%K nonn,tabl

%O 4,1

%A _Gheorghe Coserea_, Mar 15 2016