login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of nXk 0..4 arrays with some element plus some horizontally, diagonally, antidiagonally or vertically adjacent neighbor totalling four exactly once.
9

%I #4 Mar 05 2016 19:28:34

%S 0,5,5,40,216,40,240,3096,3096,240,1280,39784,103296,39784,1280,6400,

%T 462680,3200604,3200604,462680,6400,30720,5145736,90748696,240637408,

%U 90748696,5145736,30720,143360,55265336,2472983556,16644595392

%N T(n,k)=Number of nXk 0..4 arrays with some element plus some horizontally, diagonally, antidiagonally or vertically adjacent neighbor totalling four exactly once.

%C Table starts

%C ......0..........5.............40................240...................1280

%C ......5........216...........3096..............39784.................462680

%C .....40.......3096.........103296............3200604...............90748696

%C ....240......39784........3200604..........240637408............16644595392

%C ...1280.....462680.......90748696........16644595392..........2840332868960

%C ...6400....5145736.....2472983556......1109236460528........467693538063508

%C ..30720...55265336....65284613232.....71730749075588......74936429415811576

%C .143360..580002280..1686961414812...4544255355000752...11771832152564634464

%C .655360.5978552216.42866673833128.283289815771686692.1821445245786662249776

%H R. H. Hardin, <a href="/A269829/b269829.txt">Table of n, a(n) for n = 1..144</a>

%F Empirical for column k:

%F k=1: a(n) = 8*a(n-1) -16*a(n-2)

%F k=2: [order 6] for n>7

%F k=3: [order 18] for n>19

%F k=4: [order 48] for n>49

%e Some solutions for n=3 k=4

%e ..0..0..3..3. .0..0..2..3. .0..0..2..3. .0..0..0..2. .0..1..4..1

%e ..1..0..2..3. .0..1..3..3. .0..0..2..3. .1..0..1..0. .0..0..1..1

%e ..1..1..3..3. .1..2..4..2. .3..3..3..0. .4..2..1..2. .0..1..2..1

%K nonn,tabl

%O 1,2

%A _R. H. Hardin_, Mar 05 2016