%I #10 Mar 06 2016 04:03:17
%S 1,1,17,1393,359200,224991776,291968881696,701412781560352,
%T 2873957814268080128,18859650596161401139200,
%U 188619789441121624152354816,2761804817165898231731040301056,57271995555712767650976765232545792,1635810412682066454426684822491878391808
%N G.f.: Product_{n>=1} 1/(1 - x^n/n^4) = Sum_{n>=0} a(n)*x^n/n!^4.
%H Vaclav Kotesovec, <a href="/A269791/b269791.txt">Table of n, a(n) for n = 0..140</a>
%F a(n) ~ c * n!^4, where c = Product_{k>=2} 1/(1-1/k^4) = 4*Pi/sinh(Pi) = 4*A090986 = 1.08811621992853265180094633468815...
%t Table[n!^4 * SeriesCoefficient[Product[1/(1 - x^k/k^4), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
%o (PARI) {a(n)=n!^4*polcoeff(prod(k=1, n, 1/(1-x^k/k^4 +x*O(x^n))), n)}
%o for(n=0, 20, print1(a(n), ", "))
%Y Cf. A007841, A249588, A249593, A269793, A269794.
%K nonn
%O 0,3
%A _Vaclav Kotesovec_, Mar 05 2016