login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269785
Primes p such that 2*p + 23 is a square.
1
13, 29, 73, 101, 353, 409, 601, 673, 829, 1093, 1289, 1613, 1973, 2801, 2953, 3109, 3433, 4129, 4889, 5501, 6373, 6833, 7069, 7309, 8053, 9649, 9929, 10501, 13933, 16369, 18229, 19001, 20593, 21001, 25301, 26209, 26669, 28549, 30493, 31489, 33013, 33529, 36709
OFFSET
1,1
COMMENTS
Primes of the form 2*k^2 + 2*k - 11.
MATHEMATICA
Select[Prime[Range[5000]], IntegerQ[Sqrt[2 # + 23]] &]
PROG
(Magma) [p: p in PrimesUpTo(50000) | IsSquare(2*p + 23)];
(PARI) lista(nn) = forprime(p=2, nn, if (issquare(2*p+23), print1(p, ", "))); \\ Michel Marcus, Mar 22 2016
(Python)
from gmpy2 import is_prime, is_square
for p in range(3, 10**6, 2):
if(not is_square(2*p+23)):continue
elif(is_prime(p)):print(p)
# Soumil Mandal, Apr 07 2016
CROSSREFS
Cf. A000040.
Subsequence of A002144, A045433.
Cf. similar sequences listed in A269784.
Sequence in context: A139838 A217197 A141196 * A123571 A358742 A209989
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, Mar 22 2016
STATUS
approved