%I #15 Aug 10 2023 07:16:32
%S 1,1,1,1,3,3,-5,3,3,-5,3,3,8,8,-13,8,8,-13,8,-13,8,8,-13,8,8,-13,8,
%T -13,8,8,-13,8,8,21,21,-34,21,21,-34,21,-34,21,21,-34,21,21,-34,21,
%U -34,21,21,-34,21,-34,21,21,-34,21,21,-34,21,-34,21,21,-34,21,21,-34,21,-34,21,21,-34,21,-34,21,21,-34,21,21
%N First differences of A269729.
%C John Conway remarks that he can explain why the terms of this sequence are (up to sign) Fibonacci numbers.
%D J. H. Conway, Postings to Math Fun Mailing List, Nov 25 1996 and Dec 02 1996.
%H Jean-François Alcover, <a href="/A269733/a269733.png">Plot of differences</a>
%H J. H. Conway, Allan Wechsler, Marc LeBrun, Dan Hoey, N. J. A. Sloane, <a href="/A269725/a269725.txt">On Kimberling Sums and Para-Fibonacci Sequences</a>, Correspondence and Postings to Math-Fun Mailing List, Nov 1996 to Jan 1997
%p [seq(A269729(n),n=0..120)] ;
%p DIFF(%) ; # _R. J. Mathar_, May 08 2019
%Y Cf. A269729.
%K sign,easy
%O 0,5
%A _N. J. A. Sloane_, Mar 08 2016
%E More terms from _R. J. Mathar_, May 08 2019