login
First differences of A269729.
2

%I #15 Aug 10 2023 07:16:32

%S 1,1,1,1,3,3,-5,3,3,-5,3,3,8,8,-13,8,8,-13,8,-13,8,8,-13,8,8,-13,8,

%T -13,8,8,-13,8,8,21,21,-34,21,21,-34,21,-34,21,21,-34,21,21,-34,21,

%U -34,21,21,-34,21,-34,21,21,-34,21,21,-34,21,-34,21,21,-34,21,21,-34,21,-34,21,21,-34,21,-34,21,21,-34,21,21

%N First differences of A269729.

%C John Conway remarks that he can explain why the terms of this sequence are (up to sign) Fibonacci numbers.

%D J. H. Conway, Postings to Math Fun Mailing List, Nov 25 1996 and Dec 02 1996.

%H Jean-François Alcover, <a href="/A269733/a269733.png">Plot of differences</a>

%H J. H. Conway, Allan Wechsler, Marc LeBrun, Dan Hoey, N. J. A. Sloane, <a href="/A269725/a269725.txt">On Kimberling Sums and Para-Fibonacci Sequences</a>, Correspondence and Postings to Math-Fun Mailing List, Nov 1996 to Jan 1997

%p [seq(A269729(n),n=0..120)] ;

%p DIFF(%) ; # _R. J. Mathar_, May 08 2019

%Y Cf. A269729.

%K sign,easy

%O 0,5

%A _N. J. A. Sloane_, Mar 08 2016

%E More terms from _R. J. Mathar_, May 08 2019