login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269587
Number of length-7 0..n arrays with no repeated value differing from the previous repeated value by more than one.
1
128, 1889, 13946, 67763, 248324, 745013, 1927694, 4453031, 9406088, 18482249, 34214498, 60251099, 101688716, 165466013, 260822774, 399829583, 597993104, 874942001, 1255198538, 1769040899, 2453461268, 3353224709, 4522033886
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = n^7 + 7*n^6 + 11*n^5 + 35*n^4 + 28*n^3 + 42*n^2 + 5*n - 1.
Conjectures from Colin Barker, Jan 24 2019: (Start)
G.f.: x*(128 + 865*x + 2418*x^2 + 1919*x^3 - 116*x^4 - 129*x^5 - 46*x^6 + x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
EXAMPLE
Some solutions for n=4:
..0. .0. .2. .1. .1. .2. .3. .0. .0. .0. .3. .3. .1. .0. .4. .4
..4. .3. .2. .2. .0. .2. .1. .4. .2. .0. .3. .1. .1. .3. .1. .0
..3. .1. .3. .4. .2. .4. .1. .2. .3. .0. .0. .4. .3. .2. .4. .1
..3. .0. .4. .4. .1. .3. .2. .3. .2. .1. .2. .3. .2. .2. .2. .0
..2. .4. .3. .2. .1. .1. .3. .1. .1. .1. .0. .0. .4. .2. .0. .0
..4. .4. .1. .3. .4. .4. .0. .4. .3. .1. .1. .0. .0. .1. .4. .0
..1. .2. .2. .0. .1. .2. .4. .1. .2. .1. .3. .1. .0. .0. .3. .0
CROSSREFS
Row 7 of A269583.
Sequence in context: A269081 A200789 A250356 * A232053 A250234 A364690
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 01 2016
STATUS
approved