login
A269481
Continued fraction expansion of the Dirichlet eta function at 4.
0
0, 1, 17, 1, 7, 3, 3, 1, 7, 3, 6, 1, 1, 7, 1, 11, 1, 11, 5, 1, 2, 2, 2, 7, 1, 14, 6, 5, 1, 1, 1, 1, 10, 9, 1, 1, 5, 2, 2, 3, 2, 5, 2, 4, 1, 46, 312, 3, 3, 1, 15, 1, 2, 5, 2, 1, 1, 27, 1, 2, 1, 2, 11, 5, 2, 1, 482, 3, 2, 4, 2, 2, 3, 1, 3, 1, 2, 1, 1, 13, 1, 13, 1, 1, 67, 149, 7, 2, 2, 18, 1, 2, 1, 1, 1, 51, 1, 7, 1, 8
OFFSET
0,3
COMMENTS
Continued fraction of Sum_{k>=1} (-1)^(k - 1)/k^4 = (7*Pi^4)/720 = 0.9470328294972459175765...
EXAMPLE
1/1^4 - 1/2^4 + 1/3^4 - 1/4^4 + 1/5^4 - 1/6^4 +... = 1/(1 + 1/(17 + 1/(1 + 1/(7 + 1/(3 + 1/(3 + 1/...)))))).
MATHEMATICA
ContinuedFraction[(7 Pi^4)/720, 100]
CROSSREFS
Sequence in context: A040301 A175960 A040302 * A229201 A040303 A040304
KEYWORD
nonn,cofr,changed
AUTHOR
Ilya Gutkovskiy, Feb 27 2016
STATUS
approved