Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Jan 22 2019 08:19:32
%S 4,16,60,228,852,3180,11796,43644,160980,592572,2177268,7988700,
%T 29277204,107195196,392179380,1433907228,5240022612,19140884220,
%U 69894090996,255150047964,931214323860,3397977981372,12397189043508,45224087388060
%N Number of length-n 0..3 arrays with no repeated value equal to the previous repeated value.
%H R. H. Hardin, <a href="/A269462/b269462.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 5*a(n-1) - 18*a(n-3).
%F Conjectures from _Colin Barker_, Jan 22 2019: (Start)
%F G.f.: 4*x*(1 - x - 5*x^2) / ((1 - 3*x)*(1 - 2*x - 6*x^2)).
%F a(n) = (-28*3^n + (49-17*sqrt(7))*(1-sqrt(7))^n + (1+sqrt(7))^n*(49+17*sqrt(7))) / 63.
%F (End)
%e Some solutions for n=9:
%e ..1. .1. .2. .2. .0. .0. .1. .2. .1. .2. .0. .2. .1. .1. .1. .0
%e ..0. .1. .1. .1. .3. .2. .3. .0. .2. .1. .1. .1. .3. .2. .2. .1
%e ..1. .2. .2. .3. .1. .0. .2. .0. .1. .0. .3. .2. .3. .0. .2. .0
%e ..0. .1. .3. .0. .3. .0. .1. .2. .0. .0. .0. .1. .0. .3. .1. .1
%e ..1. .2. .0. .1. .1. .1. .0. .2. .3. .1. .2. .1. .3. .3. .1. .0
%e ..2. .3. .3. .2. .3. .2. .1. .0. .1. .3. .1. .3. .2. .1. .0. .0
%e ..0. .0. .0. .2. .1. .3. .2. .0. .3. .2. .1. .1. .3. .3. .3. .1
%e ..2. .0. .1. .0. .3. .0. .0. .2. .3. .0. .2. .0. .1. .2. .0. .1
%e ..2. .3. .0. .0. .2. .2. .3. .2. .2. .2. .2. .0. .0. .2. .0. .0
%Y Column 3 of A269467.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 27 2016