login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*(n^8 + 1)*(n^4 + 1)*(n^2 + 1)*(n + 1) + 1.
14

%I #33 Sep 08 2022 08:46:15

%S 1,17,131071,64570081,5726623061,190734863281,3385331888947,

%T 38771752331201,321685687669321,2084647712458321,11111111111111111,

%U 50544702849929377,201691918794585181,720867993281778161,2345488209948553531,7037580381120954241

%N a(n) = n*(n^8 + 1)*(n^4 + 1)*(n^2 + 1)*(n + 1) + 1.

%C a(n) = Phi_17(n) where Phi_k(x) is the k-th cyclotomic polynomial.

%H G. C. Greubel, <a href="/A269442/b269442.txt">Table of n, a(n) for n = 0..1000</a>

%H OEIS Wiki, <a href="https://oeis.org/wiki/Cyclotomic Polynomials at x=n, n! and sigma(n)">Cyclotomic Polynomials at x=n, n! and sigma(n)</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CyclotomicPolynomial.html">Cyclotomic Polynomial</a>

%H <a href="/index/Cy#CyclotomicPolynomialsValuesAtX">Index to values of cyclotomic polynomials of integer argument</a>

%H <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (17, -136, 680, -2380, 6188, -12376, 19448, -24310, 24310, -19448, 12376, -6188, 2380, -680, 136, -17, 1).

%F G.f.: (1 +130918*x^2 +62343506*x^3 +4646748160*x^4 +102074708252*x^5 +878064150546*x^6 +3419813860214*x^7 +6502752956958*x^8 +6232856389160*x^9 +3004612851498*x^10 +701875014878*x^11 +73106078368*x^12 +2893069436*x^13 +31542430*x^14 +43674*x^15 +x^16)/(1 - x)^17.

%F Sum_{n>=0} 1/a(n) = 1.05883117453...

%t Table[Cyclotomic[17, n], {n, 0, 15}]

%o (Magma) [n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1: n in [0..20]]; // _Vincenzo Librandi_, Feb 27 2016

%o (PARI) a(n)=n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1 \\ _Charles R Greathouse IV_, Jul 26 2016

%o (Sage) [n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1 for n in (0..20)] # _G. C. Greubel_, Apr 24 2019

%o (GAP) List([0..20], n-> n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1) # _G. C. Greubel_, Apr 24 2019

%Y Cf. similar sequences of the type Phi_k(n), where Phi_k is the k-th cyclotomic polynomial: A000012 (k=0), A023443 (k=1), A000027 (k=3), A002522 (k=4), A053699 (k=5), A002061 (k=6), A053716 (k=7), A002523 (k=8), A060883 (k=9), A060884 (k=10), A060885 (k=11), A060886 (k=12), A060887 (k=13), A060888 (k=14), A060889 (k=15), A060890 (k=16), this sequence (k=17), A060891 (k=18), A269446 (k=19).

%K nonn,easy

%O 0,2

%A _Ilya Gutkovskiy_, Feb 26 2016