login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Kolakoski-(1,10) sequence: a(n) is length of n-th run.
1

%I #5 Mar 07 2016 06:15:55

%S 1,10,10,10,10,10,10,10,10,10,10,1,1,1,1,1,1,1,1,1,1,10,10,10,10,10,

%T 10,10,10,10,10,1,1,1,1,1,1,1,1,1,1,10,10,10,10,10,10,10,10,10,10,1,1,

%U 1,1,1,1,1,1,1,1,10,10,10,10,10,10,10,10,10,10,1,1,1

%N Kolakoski-(1,10) sequence: a(n) is length of n-th run.

%C No prime number with the union of many terms.

%H Michael Baake and Bernd Sing, <a href="http://arXiv.org/abs/math.MG/0206098">Kolakoski-(3,1) is a (deformed) model set</a>, arXiv:math/0206098 [math.MG], 2002-2003.

%t seed = {1, 10}; w = {}; i = 1; Do[w = Join[w, Array[seed[[Mod[i - 1, Length[seed]] + 1]]&, If[i > Length[w], seed, w][[i]]]]; i++, {n, 42}]; w

%Y Cf. similar sequences listed in A269268.

%K nonn,easy

%O 1,2

%A _Vincenzo Librandi_, Mar 02 2016