%I #13 Mar 22 2020 01:59:41
%S 0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,1,0,1,0,0,1,0,1,0,0,1,0,
%T 0,1,0,0,1,0,0,1,2,0,2,0,0,1,0,0,0,0,1,2,0,0,0,1,0,0,0,1,2,0,0,0,1,0,
%U 0,1,0,0,1,1,0,1,1,0,0,0,0,0,1,1,0,0,0,1,1,0,0,0,3,1,2,1,2,0,0,0,0
%N Number of times the digit 8 appears in the decimal expansion of n^3.
%C The cubes corresponding to the first occurrence of 1, 2, 3, ... are listed in A036535, i.e., A036535(n)^(1/3) = A048373(n) is the index of the first occurrence of n.
%e 0^3 = 0, 1^3 = 1, 3^3 = 27 and 4^3 = 64 all have a(0) = a(1) = a(3) = a(4) = 0 digits '8'.
%e 2^3 = 8 has a(2) = 1 digit '8'.
%t Table[DigitCount[n^3, 10, 8], {n, 0, 100}] (* _Robert Price_, Mar 21 2020 *)
%o (PARI) A269248(n)=#select(t->t==8,digits(n^3))
%Y Cf. A036535 and A036527 - A036536; A048373 and A048365 - A048374.
%Y Analog for other digits 0, 1, ..., 7, 9: A269250, A269241, A269242, A269243, A269244, A269245, A269246, A269247, A269249.
%Y Analog for squares: A086016, and A086008 - A086017 for digits 0 - 9.
%K nonn,base
%O 0,43
%A _M. F. Hasler_, Feb 20 2016