login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Permutation of natural numbers: a(1) = 1, a(2n) = 2*a(n), a(2n+1) = A250469(a(A269380(2n+1))).
10

%I #16 Mar 03 2016 22:48:29

%S 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,25,20,21,22,19,24,23,26,

%T 27,28,29,30,49,32,33,34,35,36,31,50,39,40,37,42,41,44,45,38,43,48,55,

%U 46,51,52,47,54,121,56,57,58,77,60,53,98,63,64,65,66,59,68,69,70,61,72,169,62,75,100,67,78,85,80,81

%N Permutation of natural numbers: a(1) = 1, a(2n) = 2*a(n), a(2n+1) = A250469(a(A269380(2n+1))).

%H Antti Karttunen, <a href="/A269172/b269172.txt">Table of n, a(n) for n = 1..2244</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%F a(1) = 1, then after for even n, a(n) = 2*a(n/2), and for odd n, A250469(a(A269380(n))).

%F a(1) = 1, for n > 1, a(n) = A083221(A260738(n), a(A260739(n))).

%F As a composition of other permutations:

%F a(n) = A252755(A269386(n)).

%F a(n) = A252753(A269388(n)).

%F Other identities. For all n >= 1:

%F A000035(a(n)) = A000035(n). [This permutation preserves the parity of n.]

%F a(A003309(n)) = A008578(n). [Maps Ludic numbers to noncomposites.]

%o (Scheme, two versions, both using memoization-macro definec)

%o (definec (A269172 n) (cond ((<= n 1) n) ((even? n) (* 2 (A269172 (/ n 2)))) (else (A250469 (A269172 (A269380 n))))))

%o (definec (A269172 n) (if (<= n 1) n (A083221bi (A260738 n) (A269172 (A260739 n))))) ;; Code for A083221bi given in A083221.

%Y Inverse: A269171.

%Y Cf. A000035, A003309, A008578, A083221, A250469, A260738, A260739, A269380.

%Y Related or similar permutations: A260741, A260742, A269356, A269358, A255422.

%Y Cf. also A269394 (a(3n)/3) and A269396.

%Y Differs from A255408 for the first time at n=38, where a(38) = 50, while A255408(38) = 38.

%K nonn

%O 1,2

%A _Antti Karttunen_, Mar 03 2016