login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1 + 2*x + 3*x^2 + x^3 + x^5)/(1 - x^3)^2.
1

%I #21 Sep 08 2022 08:46:15

%S 1,2,3,3,4,7,5,6,11,7,8,15,9,10,19,11,12,23,13,14,27,15,16,31,17,18,

%T 35,19,20,39,21,22,43,23,24,47,25,26,51,27,28,55,29,30,59,31,32,63,33,

%U 34,67,35,36,71,37,38,75,39,40,79,41,42,83,43,44,87,45

%N Expansion of (1 + 2*x + 3*x^2 + x^3 + x^5)/(1 - x^3)^2.

%H Ilya Gutkovskiy, <a href="/A269098/a269098.pdf">Expanded graphical example</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,2,0,0,-1).

%F G.f.: (1 + 2*x + 3*x^2 + x^3 + x^5)/(1 - x^3)^2.

%F a(3*n) + a(3*n+1) = a(3*n+2).

%F a(n) = (8*(n+1) + (1-2*n)*cos(2*n*Pi/3) + sqrt(3)*(3-2*n)*sin(2*n*Pi/3))/9.

%F a(n) = 1 + n + (1-2*n)*floor(n/3)/3 + 2*(n-2)*floor((n+1)/3)/3. - _Vaclav Kotesovec_, Feb 25 2016

%e a(0) = 1;

%e a(1) = 2;

%e a(2) = 1 + 2 = 3;

%e a(3) = 3;

%e a(4) = 4;

%e a(5) = 3 + 4 = 7,

%e a(6) = 5;

%e a(7) = 6;

%e a(8) = 5 + 6 = 11, etc.

%t LinearRecurrence[{0, 0, 2, 0, 0, -1}, {1, 2, 3, 3, 4, 7}, 78]

%t CoefficientList[Series[(1 + 2 x + 3 x^2 + x^3 + x^5)/(1 - x^3)^2, {x, 0, 77}], x]

%t Table[(8 (n + 1) + (1 - 2 n) Cos[2 n (Pi/3)] + Sqrt[3] (3 - 2 n) Sin[2 n (Pi/3)])/9, {n, 0, 77}]

%o (PARI) Vec((1 + 2*x + 3*x^2 + x^3 + x^5)/(1 - x^3)^2 + O(x^80)) \\ _Michel Marcus_, Feb 20 2016

%o (Magma) I:=[1,2,3,3,4,7]; [n le 6 select I[n] else 2*Self(n-3)-Self(n-6): n in [1..70]]; // _Vincenzo Librandi_, Feb 20 2016

%Y Cf. A000027, A004767.

%K nonn,easy

%O 0,2

%A _Ilya Gutkovskiy_, Feb 19 2016