login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangle read by rows: row n lists divisors of n-th composite number.
1

%I #19 Apr 05 2016 23:01:22

%S 1,2,4,1,2,3,6,1,2,4,8,1,3,9,1,2,5,10,1,2,3,4,6,12,1,2,7,14,1,3,5,15,

%T 1,2,4,8,16,1,2,3,6,9,18,1,2,4,5,10,20,1,3,7,21,1,2,11,22,1,2,3,4,6,8,

%U 12,24,1,5,25,1,2,13,26,1,3,9,27,1,2,4,7,14,28,1,2,3,5,6,10,15,30,1,2,4,8,16,32,1,3,11,33,1,2,17,34

%N Irregular triangle read by rows: row n lists divisors of n-th composite number.

%C Subsequence of A027750.

%C Row sums give A073255.

%C Right border gives A002808.

%H Ilya Gutkovskiy, <a href="/A269065/a269065.pdf">Extended example</a>

%H Ilya Gutkovskiy, <a href="/A269065/a269065_1.pdf">Graphic additions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CompositeNumber.html">Composite Number</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Divisor.html">Divisor</a>

%H <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a>

%e Triangle begins:

%e 1, 2, 4;

%e 1, 2, 3, 6;

%e 1, 2, 4, 8;

%e 1, 3, 9;

%e 1, 2, 5, 10;

%e 1, 2, 3, 4, 6, 12;

%e 1, 2, 7, 14;

%e 1, 3, 5, 15

%e 1, 2, 4, 8, 16;

%e 1, 2, 3, 6, 9, 18;

%e 1, 2, 4, 5, 10, 20;

%e 1, 3, 7, 21;

%e 1, 2, 11, 22;

%e 1, 2, 3, 4, 6, 8, 12, 24;

%e 1, 5, 25;

%e 1, 2, 13, 26;

%e 1, 3, 9, 27;

%e 1, 2, 4, 7, 14, 28;

%e 1, 2, 3, 5, 6, 10, 15, 30;

%e 1, 2, 4, 8, 16, 32;

%e 1, 3, 11, 33;

%e 1, 2, 17, 34;

%e ...

%t Flatten[Table[Divisors[Composite[n]], {n, 22}]]

%o (PARI) tabf(nn) = forcomposite(c=1, nn, print(divisors(c), ", ")); \\ _Michel Marcus_, Feb 21 2016

%Y Cf. A002808, A027750, A035004 (row length), A133021, A133031, A138881.

%K nonn,tabf

%O 1,2

%A _Ilya Gutkovskiy_, Feb 21 2016