login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nX7 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.
1

%I #4 Feb 18 2016 11:37:56

%S 768,9864,253416,6053094,140497512,3193266318,71430596250,

%T 1577976495486,34509932303172,748499855355192,16122334931683590,

%U 345226129034011068,7354858033380328494,156000244649213353110,3296017711974478218258

%N Number of nX7 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two not more than once.

%C Column 7 of A269052.

%H R. H. Hardin, <a href="/A269051/b269051.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 82*a(n-1) -2779*a(n-2) +50254*a(n-3) -514677*a(n-4) +2743554*a(n-5) -2950648*a(n-6) -48609034*a(n-7) +245316224*a(n-8) -89432156*a(n-9) -2444502643*a(n-10) +5704858072*a(n-11) +7254972423*a(n-12) -41716035658*a(n-13) +18035762825*a(n-14) +132606292618*a(n-15) -178302990168*a(n-16) -171928095488*a(n-17) +491624257303*a(n-18) -70904009836*a(n-19) -621985038704*a(n-20) +477824279660*a(n-21) +281672875548*a(n-22) -522707244404*a(n-23) +119050620101*a(n-24) +190519380818*a(n-25) -140300285301*a(n-26) +10246766686*a(n-27) +24709126330*a(n-28) -9478840252*a(n-29) -368991021*a(n-30) +964165580*a(n-31) -172681320*a(n-32) -20355920*a(n-33) +9906636*a(n-34) -719568*a(n-35) -120720*a(n-36) +22272*a(n-37) -1024*a(n-38) for n>39

%e Some solutions for n=2

%e ..1..0..1..0..1..0..1. .2..2..1..2..2..2..2. .0..1..2..2..2..2..1

%e ..0..0..0..0..1..2..0. .1..2..1..2..1..2..2. .2..1..2..2..1..2..2

%Y Cf. A269052.

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 18 2016