login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A269043 a(n) is the number of distinct values that can be expressed as prime(n+k) + prime(n-k) in at least 2 different ways. 2

%I

%S 0,0,0,1,1,1,1,2,3,3,2,2,3,1,4,4,2,4,4,4,3,5,5,7,9,8,7,8,7,6,7,9,7,9,

%T 8,11,8,8,7,10,9,11,12,9,9,14,11,12,11,15,15,12,14,12,12,17,11,14,15,

%U 15,14,15,18,16,13,18,12,16,14,16,14,12,19,17,13,19

%N a(n) is the number of distinct values that can be expressed as prime(n+k) + prime(n-k) in at least 2 different ways.

%C Conjecture: a(n) > 0 for n > 3.

%H Michel Lagneau, <a href="/A269043/b269043.txt">Table of n, a(n) for n = 1..1000</a>

%e a(13) = 3 because:

%e p(13 + 1) + p(13 - 1) = 43 + 37 = 80;

%e p(13 + 2) + p(13 - 2) = 47 + 31 = 78;

%e p(13 + 3) + p(13 - 3) = 53 + 29 = 82;

%e p(13 + 4) + p(13 - 4) = 59 + 23 = 82;

%e p(13 + 5) + p(13 - 5) = 61 + 19 = 80;

%e p(13 + 6) + p(13 - 6) = 67 + 17 = 84;

%e p(13 + 7) + p(13 - 7) = 71 + 13 = 84;

%e p(13 + 8) + p(13 - 8) = 73 + 11 = 84.

%e p(13 + 9) + p(13 - 9) = 79 + 7 = 86;

%e p(13 + 10) + p(13 - 10) = 83 + 5 = 88;

%e p(13 + 11) + p(13 - 11) = 89 + 3 = 92;

%e p(13 + 12) + p(13 - 12) = 97 + 2 = 99.

%e The 3 distinct values of prime(n+k) + prime(n-k) that are each obtained in at least 2 ways are 80, 82 and 84.

%p for n from 1 to 100 do:

%p lst:={}:W:=array(1..n-1):cr:=0:

%p for m from n-1 by -1 to 1 do:

%p q:=ithprime(n-m)+ithprime(n+m):lst:=lst union {q}:W[m]:=q:

%p od:

%p n0:=nops(lst):c:=0:U:=array(1..n0):

%p for i from 1 to n0 do:

%p c1:=0:

%p for j from 1 to n-1 do:

%p if lst[i]=W[j] then c:=c+1:c1:=c1+1:

%p else fi:

%p od:

%p U[i]:=c1:cr:=cr+1:

%p od:

%p ct:=0:

%p for l from 1 to cr do:

%p if U[l]>1 then ct:=ct+1:

%p else fi:

%p od:

%p printf(`%d, `,ct):

%p od:

%o (PARI) a(n) = {v = []; for (k=1, n-1, v = concat(v, prime(n+k) + prime(n-k));); vd = vecsort(v,,8); sum(k=1, #vd, #select(x->x==vd[k], v)>1);} \\ _Michel Marcus_, Mar 13 2016

%Y Cf. A006562, A055380, A055382.

%K nonn

%O 1,8

%A _Michel Lagneau_, Feb 18 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 20 03:20 EDT 2021. Contains 345157 sequences. (Running on oeis4.)