%I #4 Feb 18 2016 08:57:14
%S 96,672,9528,115656,1326576,14710368,159397596,1698064656,17853542544,
%T 185754411168,1916112393912,19623814814640,199755193119372,
%U 2022721445384448,20388967766219208,204700225563136152
%N Number of nX5 0..2 arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
%C Column 5 of A269035.
%H R. H. Hardin, <a href="/A269032/b269032.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 28*a(n-1) -286*a(n-2) +1290*a(n-3) -2373*a(n-4) +304*a(n-5) +3551*a(n-6) -2846*a(n-7) -546*a(n-8) +1308*a(n-9) -505*a(n-10) +76*a(n-11) -4*a(n-12) for n>13
%e Some solutions for n=4
%e ..2..0..1..0..0. .0..1..2..1..0. .0..0..0..0..1. .2..1..2..2..1
%e ..1..2..1..0..1. .2..1..2..1..2. .1..0..0..0..0. .2..1..2..1..2
%e ..1..0..1..2..1. .2..1..2..1..0. .0..0..0..0..1. .0..1..2..2..2
%e ..0..0..1..2..2. .0..2..2..1..2. .0..0..0..1..0. .0..1..2..2..2
%Y Cf. A269035.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 18 2016