login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of nXk binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
13

%I #4 Feb 17 2016 12:04:50

%S 0,1,0,2,4,0,5,8,15,0,10,36,46,48,0,20,88,305,224,145,0,38,272,1078,

%T 2136,1066,420,0,71,696,4948,10976,14240,4952,1183,0,130,1900,18210,

%U 73568,109058,91048,22654,3264,0,235,4856,73277,390064,1049588,1053432,566656

%N T(n,k)=Number of nXk binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.

%C Table starts

%C .0.....1.......2.........5.........10...........20.............38

%C .0.....4.......8........36.........88..........272............696

%C .0....15......46.......305.......1078.........4948..........18210

%C .0....48.....224......2136......10976........73568.........390064

%C .0...145....1066.....14240.....109058......1049588........8134304

%C .0...420....4952.....91048....1053432.....14382480......164351184

%C .0..1183...22654....566656...10002542....192100836.....3258530608

%C .0..3264..102416...3456320...93733440...2516546784....63679868768

%C .0..8865..458674..20760192..869397882..32481770852..1230707111424

%C .0.23780.2038328.123186784.7996744280.414339126768.23573013881888

%H R. H. Hardin, <a href="/A269011/b269011.txt">Table of n, a(n) for n = 1..721</a>

%F Empirical for column k:

%F k=1: a(n) = a(n-1)

%F k=2: a(n) = 4*a(n-1) -2*a(n-2) -4*a(n-3) -a(n-4)

%F k=3: a(n) = 10*a(n-1) -31*a(n-2) +24*a(n-3) +21*a(n-4) -18*a(n-5) -9*a(n-6)

%F k=4: a(n) = 12*a(n-1) -40*a(n-2) +8*a(n-3) +92*a(n-4) -32*a(n-5) -64*a(n-6) for n>7

%F k=5: [order 12]

%F k=6: [order 14]

%F k=7: [order 24] for n>25

%F Empirical for row n:

%F n=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)

%F n=2: a(n) = 2*a(n-1) +5*a(n-2) -6*a(n-3) -9*a(n-4)

%F n=3: a(n) = 4*a(n-1) +8*a(n-2) -34*a(n-3) -16*a(n-4) +60*a(n-5) -25*a(n-6)

%F n=4: [order 8]

%F n=5: [order 14]

%F n=6: [order 20]

%F n=7: [order 32]

%e Some solutions for n=4 k=4

%e ..1..1..0..0. .0..0..1..0. .1..0..1..1. .0..1..0..0. .0..0..0..0

%e ..0..0..0..1. .0..0..1..0. .1..0..0..0. .0..0..1..0. .1..0..0..0

%e ..0..0..0..0. .1..0..0..0. .1..0..0..1. .0..0..1..0. .0..1..0..0

%e ..0..1..0..1. .0..0..1..1. .0..0..0..0. .0..0..0..0. .0..1..0..0

%Y Column 2 is A093967.

%Y Row 1 is A001629.

%K nonn,tabl

%O 1,4

%A _R. H. Hardin_, Feb 17 2016