%I #4 Feb 17 2016 12:04:03
%S 38,696,18210,390064,8134304,164351184,3258530608,63679868768,
%T 1230707111424,23573013881888,448188039743360,8468276406290880,
%U 159151109503787520,2977237536021550208,55469798154343791232
%N Number of nX7 binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
%C Column 7 of A269011.
%H R. H. Hardin, <a href="/A269010/b269010.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 60*a(n-1) -1352*a(n-2) +13344*a(n-3) -35948*a(n-4) -311480*a(n-5) +1985472*a(n-6) +1821840*a(n-7) -31021776*a(n-8) +4125984*a(n-9) +251967152*a(n-10) -46853056*a(n-11) -1173410880*a(n-12) -138650624*a(n-13) +2912101888*a(n-14) +1295316992*a(n-15) -3360870400*a(n-16) -2339016704*a(n-17) +1368141824*a(n-18) +1168457728*a(n-19) -291553280*a(n-20) -245170176*a(n-21) +45023232*a(n-22) +19922944*a(n-23) -4194304*a(n-24) for n>25
%e Some solutions for n=3
%e ..0..1..0..1..0..0..1. .1..0..1..0..0..1..0. .1..0..1..0..0..1..0
%e ..0..1..0..0..0..0..1. .1..0..0..0..0..0..0. .0..0..0..0..1..0..0
%e ..0..0..0..0..0..1..0. .1..0..1..1..0..0..0. .1..0..1..0..0..0..0
%Y Cf. A269011.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 17 2016