%I #6 Apr 17 2022 22:25:24
%S 10,88,1078,10976,109058,1053432,10002542,93733440,869397882,
%T 7996744280,73044076454,663272676512,5992284643698,53897945082104,
%U 482908211678430,4311837258739840,38381936117267690,340717648957870424
%N Number of n X 5 binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
%C Column 5 of A269011.
%H R. H. Hardin, <a href="/A269008/b269008.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 24*a(n-1) -198*a(n-2) +584*a(n-3) +137*a(n-4) -2864*a(n-5) +1132*a(n-6) +4336*a(n-7) -1391*a(n-8) -2280*a(n-9) +90*a(n-10) +200*a(n-11) -25*a(n-12).
%e Some solutions for n=4
%e ..1..0..0..0..0. .0..0..0..0..1. .1..0..0..0..1. .0..0..0..0..1
%e ..1..0..0..1..0. .0..1..0..1..0. .1..0..0..0..1. .0..1..0..0..1
%e ..0..0..1..0..0. .0..1..0..0..0. .0..1..0..0..0. .0..0..0..1..0
%e ..1..0..1..0..1. .0..1..0..0..1. .0..0..0..0..0. .0..0..0..0..0
%Y Cf. A269011.
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 17 2016