Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Feb 17 2016 07:27:06
%S 2,4,4,7,13,8,13,35,41,16,23,103,174,126,32,41,278,805,849,379,64,72,
%T 763,3331,6009,4083,1121,128,126,2037,14080,37987,43512,19416,3272,
%U 256,219,5421,57287,244397,421450,308112,91491,9449,512,379,14264,232449,1506570
%N T(n,k)=Number of nXk binary arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two not more than once.
%C Table starts
%C ....2.....4.......7........13..........23............41..............72
%C ....4....13......35.......103.........278...........763............2037
%C ....8....41.....174.......805........3331.........14080...........57287
%C ...16...126.....849......6009.......37987........244397.........1506570
%C ...32...379....4083.....43512......421450.......4097199........38241770
%C ...64..1121...19416....308112.....4583103......66954420.......946498448
%C ..128..3272...91491...2144780....49084071....1073436321.....22995344760
%C ..256..9449..427863..14730784...519385102...16957258387....550731432312
%C ..512.27049.1988142.100087792..5442503771..264744926212..13040291111728
%C .1024.76866.9187653.674045392.56571775611.4093941136805.305911647779632
%H R. H. Hardin, <a href="/A268995/b268995.txt">Table of n, a(n) for n = 1..799</a>
%F Empirical for column k:
%F k=1: a(n) = 2*a(n-1)
%F k=2: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3) -a(n-4)
%F k=3: a(n) = 10*a(n-1) -31*a(n-2) +30*a(n-3) -9*a(n-4)
%F k=4: a(n) = 16*a(n-1) -88*a(n-2) +200*a(n-3) -208*a(n-4) +96*a(n-5) -16*a(n-6) for n>7
%F k=5: [order 8] for n>9
%F k=6: [order 10] for n>12
%F k=7: [order 14] for n>16
%F Empirical for row n:
%F n=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
%F n=2: a(n) = 2*a(n-1) +5*a(n-2) -4*a(n-3) -11*a(n-4) -6*a(n-5) -a(n-6)
%F n=3: [order 9]
%F n=4: [order 16]
%F n=5: [order 26]
%F n=6: [order 42]
%F n=7: [order 68]
%e Some solutions for n=4 k=4
%e ..1..1..0..1. .1..0..0..1. .0..0..0..0. .0..0..1..0. .0..0..0..1
%e ..0..0..0..1. .1..1..0..1. .0..1..0..0. .1..0..1..0. .0..0..0..1
%e ..0..1..0..1. .0..0..0..0. .0..1..0..1. .1..0..0..0. .0..0..1..0
%e ..0..0..0..0. .1..0..1..0. .0..0..0..0. .1..0..1..0. .1..0..1..0
%Y Column 1 is A000079.
%Y Row 1 is A208354(n+1).
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Feb 17 2016