login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Magic sums of 3 X 3 semimagic squares composed of primes.
0

%I #8 Feb 20 2016 21:10:27

%S 53,59,61,65,67,71,73,77,79,83,85,89,91,95,97,99,101,103,107,109,113,

%T 115,117,119,121,123,125,127,129,131,133,135,137,139,141,143,145,147,

%U 149,151,153,155,157,159,161,163,165,167,169,171

%N Magic sums of 3 X 3 semimagic squares composed of primes.

%C This sequence is infinite because the Green-Tao theorem implies that sequence A268790 is infinite.

%C I conjecture that every odd number greater than 111 belongs to this sequence.

%H <a href="/index/Mag#magic">Index entries for sequences related to magic squares</a>

%e Examples of 3 X 3 semimagic squares composed of primes.

%e .

%e |---|---|---|

%e | 3 | 13| 37|

%e |---|---|---|

%e | 31| 17| 5 |

%e |---|---|---|

%e | 19| 23| 11|

%e |---|---|---|

%e The magic constant is 53 = a(1).

%e .

%e |---|---|---|

%e | 3 | 13| 43|

%e |---|---|---|

%e | 37| 17| 5 |

%e |---|---|---|

%e | 19| 29| 11|

%e |---|---|---|

%e The magic constant is 59 = a(2).

%Y Cf. A268912. Supersequence of A268790.

%K nonn

%O 1,1

%A _Arkadiusz Wesolowski_, Feb 15 2016