Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Apr 10 2022 14:24:19
%S 0,6912,98496,1347192,17194680,214142760,2611960344,31382176824,
%T 372469407912,4376985056856,51011490408120,590386685589432,
%U 6792451934064264,77748739088317848,885979967930009496
%N Number of 5 X n 0..2 arrays with some element plus some horizontally or antidiagonally adjacent neighbor totalling two exactly once.
%C Row 5 of A268904.
%H R. H. Hardin, <a href="/A268908/b268908.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 32*a(n-1) -384*a(n-2) +2200*a(n-3) -6494*a(n-4) +9016*a(n-5) -816*a(n-6) -14888*a(n-7) +18879*a(n-8) -5464*a(n-9) -7472*a(n-10) +8336*a(n-11) -3648*a(n-12) +768*a(n-13) -64*a(n-14) for n>18.
%e Some solutions for n=3
%e ..2..2..1. .0..2..2. .2..1..2. .1..0..1. .2..1..2. .0..0..0. .2..1..0
%e ..2..0..1. .1..2..1. .2..1..0. .0..2..2. .0..2..1. .1..0..0. .2..1..0
%e ..1..2..1. .1..0..1. .0..0..1. .2..2..2. .1..2..2. .1..0..0. .2..1..0
%e ..1..0..0. .1..2..2. .1..2..2. .1..2..2. .1..2..2. .0..1..0. .2..1..2
%e ..0..0..0. .1..2..2. .1..1..0. .1..2..2. .2..2..1. .0..1..1. .0..0..0
%Y Cf. A268904.
%K nonn
%O 1,2
%A _R. H. Hardin_, Feb 15 2016